Радиус вписанной окружности в ромб равен высоте, проведенной из центра ромба на его сторону. Пусть сторона ромба с две полудиагонали образуют прямоугольный треугольник АВС с катетами АС и ВС. Найдём сторону ромба (это АС). АС = √(144² + 42²) = √(20736 + 1764) = √22500 = 150. Площадь треугольника можно записать двумя разными как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту h. То есть: h*150 = 42*144. Отсюда искомая величина равна: h = 42*144/150 = 6048 / 150 = 1008 / 25 = 40,32.
1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе. 2)По условию сказано, что угол между СМ и СН равен 15 градусов. 3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам. 4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника). 5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника) 6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см 7) По теореме Пифагора СВ= 3 корня из 3 ответ: 3 и 3корня из 3
Грань SCD и плоскость основания пирамиды пересекаются по прямой CD. Чтобы найти угол между этими плоскостями, рассмотрим треугольник SBC. Треугольник SBC -прямоугольный: SB перпендикулярна плоскости основания, а значит любой прямой, лежащей в плоскости основания, SB перпендикулярна BC. BC перпендикулярна CD, как стороны квадрата. SC- наклонная к плоскости основания перпендикулярна прямой CD по теореме о трех перпендикулярах-прямая (CD) проведенная в плоскости через основание наклонной(SC) перпендикулярно ее проекции (BC) на эту плоскость перпендикулярна и к самой наклонной.SC лежит в плокости грани SCD и перпендикулярна CD, BC лежит в плоскости основания и перпендикулярна CD , следовательно угол SCB -это угол между двумя плоскостями ABCD и SCD. Рассмотрим треугольник SBC и из этого треугольника найдем угол SCB. Найдем сторону квадрата: BD²=2BC², (4√2)²=2BC², BC²= 16·2/2=16, BC=4 ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания) найдем SB: SB²=SD²-BD² SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3. Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3 tg∠SCB=√3, ∠SCB=60 градусов
Пусть сторона ромба с две полудиагонали образуют прямоугольный треугольник АВС с катетами АС и ВС.
Найдём сторону ромба (это АС).
АС = √(144² + 42²) = √(20736 + 1764) = √22500 = 150.
Площадь треугольника можно записать двумя разными как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту h.
То есть:
h*150 = 42*144.
Отсюда искомая величина равна:
h = 42*144/150 = 6048 / 150 = 1008 / 25 = 40,32.