Объяснение:Имеется четыре вершины A, B, C и D, значит фигура на рисунке представляет собой четырёхугольник. Известно, что два угла четырёх угольника ∠BAD=∠BCD=90°, по обозначению углов уже понятно, что это противоположные углы и, значит, наша фигура прямоугольник. Но даны ещё два угла, которые дополняют друг друга ∠ADB=15° и ∠BDC=75°. Сумма этих углов равна 90°. То есть имеем четырёхугольник у которого известно, что три угла равны 90°, значит это прямоугольник, а у прямоугольника все стороны параллельны, т.е. AD║BC.
Найдем длины сторон четырехугольника
AB^2=(9-6)^2 +(0-(-1))^2=3^2 +1^2=9+1=10
BC^2=(10-9)^2 +(-2-0)^2=1+4=5
CD^2=(7-10)^2 +(-3+2)^2=9+1=10
AD^2=(7-6)^2 +(-3+1)^2=1+4=5
Следовательно, AB=CD; BC=AD
АВСД-параллелограмм(по признаку)
АС - 1/2 ВД=(4;-1) - (-1;-1,5)=(4+1;-1+1,5)=(5;0,5), так как
вектор АС=(10-6;-2-(-1))=(4;-1)
ВД=(7-9;-3-0)=(-2;-3); 1/2ВД=(-1;-1,5)
не понимаю по-украински, если надо построить, то
проводимАК||BD; AK=BO
lдостраиваем до параллелограммма на сторонах АК и АС, получим точку Е, АСЕК-пар-мм
вектор Ас-АЕ=ЕС, т. е.проводим диагональ ЕС(стрелочка в точку С)
Проведем высоту BH.
Треугольник ABH - прямоугольный. Т.к. по условию задачи угол BAH = 30 градусов, то BH = 1\2 AB = 5 см.
По теореме Пифагора: AH2=Ab2 - BH2
AH = корень из 75 = 5 корней из 3 см.
Т.к. треугольник ABC равнобедренный, то BH - высота, медиана, значит AH = HC
AC = AH+HC = 10 корней из 3 см.
p = 1\2 P = AB+BC+AC = (10+10+10 корней из 3) :2 = 10 корней из 3 см2.
Найдем радиус: r = 10 корней из 3 - 10 = 10 - 10 корней из 3 см.