См. объяснение
Объяснение:
1) Из точки А одним и тем же раствором циркуля делаем 2 засечки на прямой В. Визуально это получится как равнобедренный треугольник.
2) Из полученных засечек тем же раствором циркуля строим точку, симметричную точке А, но с другой стороны от прямой В. Назовём эту точку А1. Получилось, что мы таким образом построили два равных между собой равнобедренных треугольника с общим основанием. В получившемся четырёхугольнике все стороны равны (по построению), и противоположные углы попарно равны, - следовательно четырёхугольник является ромбом.
3) Диагонали ромба взаимно перпендикулярны.
Следовательно, если соединить А и А1 прямой, то мы таким образом построим диагональ ромба, которая перпендикулярна второй его диагонали, лежащей на прямой В, а значит, перпендикулярна и самой прямой В.
Доказательства в объяснении.
Объяснение:
1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а вписанный угол равен половине градусной меры дуги, на которую он опирается.
Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.
2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС. ∠АСВ = ∠КАВ (доказано выше).
По сумме внутренних углов треугольников АВС и КАВ имеем:
∠АВС = 180 - (∠АСВ + ∠ВАС)
∠АКВ = 180 - (∠КАВ + ∠АВК) =>
∠АВС = ∠АКВ. => ∠АВК = ∠АКВ =>
Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.
3. Треугольники АСВ и КАВ подобны по 2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).
Площади подобных треугольников относятся как квадрат коэффициента подобия.
Sabc/Sabk = k² = АС²/АВ².
По теореме косинусов в тр-ке АВС найдем:
АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).
Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>
к² зависит только от угла α, то есть
отношение площадей зависит только от величины угла АСВ.
Что и требовалось доказать