Примем дугу ЕКН за х
Тогда дуга ЕАН=х+90
В сумме эти две дуги составляют 360 градусов.
х+х+90=360
2х=360-90
2х=270
х=135
х+90=135+90=225
Вписанный угол ЕАН опирается на дугу, равную 135 градусов. Он равен половине центрального угла, опирающегося на ту же дугу
135:2=67,5
Вписанный угол ЕКН опирается на дугу, равную 225 градусов.
Он равен половине центрального угла, опирающегося на ту же дугу и равен
225:2=112, 5
Вписанный угол ЕКА опирается на дугу 180 градусов, и равен половине центрального угла 180 градусов
180:2=90
угол ЕАН=67,5ᵒ
угол ЕКН=112, 5ᵒ
угол ЕКА=90ᵒ
Назовем трапецию АВСД, где ВС и АД - основания. Из т.С опустим перпендикуляр СЕ к стороне АД. АВСЕ - прямоугольник по построению, значит АЕ=ВС=3. ЕД=АД-АЕ=5-3=2.
Из треугольника СДЕ: угол ДСЕ=180-СЕД-СДЕ=180-90-45=45. Значит треугольник СДЕ равнобедренный, значит СЕ=ЕД=2
СД^2=CE^2+EД^2=2^2+2^2=8, СД=2*корень из 2
Тело вращения представляет собой объединение цилиндра с осью АЕ и конуса с осью ДЕ.
S(боковая конуса) = пи*R*L=пи*СЕ*СД=3,14*2*2*корень из 2=12,56*корень из 2
S(боковая цилиндра) = 2*пи*R*ВС=2*пи*СЕ*ВС=2*3,14*2*3=37,68
S(основания)=пи*R^2=пи*СЕ^2=3,14*2^2=12,56
Все складываем и получаем
S=50,24+12,56*(корень из 2)
a + b =24 ,решаем систему a-b =4 и a+b =24 ,получаем Решение методом сложения.{x−y=4x+y=24Вычитаем уравнения:−{x−y=4x+y=24(x−y)−(x+y)=4−24−2y=−20y=10Подставиим найденную переменную в первое уравнение:x−(10)=4x=14ответ:(14;10)
Пусть АВСД данная трапеция. АК и ДК биссектрисы. Угол ДАК = углу АКВ как внутренние накрест лежащие при параллельных ВС и АД и секущей АК. Угол ВАК= углу ДАК так как АК биссектрисса. Значит ВК=АВ=7 см. Угол КДА = углу ДКС как внутренние накрест лежащие при параллельных ВС и АД и секущей ДК. Угол КДС= углу КДА так как ДК биссектрисса. Значит СК=СД=7 см. Тогда ВС=ВК + КС= 7 + 7 = 14. Тогда средняя линия = (14 + 20)/2=17 (Вроде правильно)