М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Виника5634
Виника5634
05.03.2023 05:46 •  Геометрия

Выдели суффикс: братик, игривый, кусочек, глупость !

👇
Ответ:
antonenko62
antonenko62
05.03.2023
Ик
Ив
оч Ек
Ость
Это суффиксы
4,6(12 оценок)
Открыть все ответы
Ответ:
casio007001
casio007001
05.03.2023
В треугольнике ABC проведем медианы AM, BN, CR. Пусть О - точка пересечения медиан, и K - середина OC. Тогда треугольник OMK подобен треугольнику, составленному из медиан с коффициентом 1/3. Действительно,
OM=AM/3,
MK=OB/2=(2BN/3)/2=BN/3,
OK=OC/2=(2CR/3)/2=CR/3.
Здесь использовано то, что О делит медианы в отношении 2:1 считая от вершины, из которой проведена медиана. Таким образом,
S_{OMK}=S_{OMC}/2.
S_{OMC}=(h/3)\cdot (BC/2)/2=(h\cdot BC/2)/6=S_{ABC}/6.
Здесь h - высота треугольника ABC из вершины  А, h/3 - высота треугольника OMC из вершины О (т.к. OM=AM/3). Итак, S_{OMK}=S_{ABC}/12. Т.к. стороны треугольника OMK равны трети длин медиан, то площадь треугольника, составленного из медиан в 9 раз больше площади треугольника OMK, т.е. она равна 9S_{ABC}/12=3S_{ABC}/4. Поэтому искомое отношение площади треугольника ABC, к площади треугольника, составленного из его медиан равно 4/3.
4,6(78 оценок)
Ответ:
olga180982
olga180982
05.03.2023
Поскольку AM перпендикулярна пллоскости квадрата, то она перпендикулярна любой прямой, лежащей в этой плоскости. В частности, AM перпендикулярна сторонам квадрата.Расстоянием от точки M до вершины B есть отрезок MB. Рассмотрим прямоугольный ΔAMB(<MAB = 90° - по сказанному выше). AB = BC = 12 как стороны квадрата, AM = 5. По теореме Пифагора,MB = √(AM² + AB²) = √(144+25) = √169 = 13. Итак, расстояние от точки M до вершины квадрата B равно 13 см. Расстояние от точки M до вершины A есть отрезок MA и равно 5 см.Найдём расстояние от точки M до вершины C(отрезок MC). Для этого проведём диагональ AC квадрата. Тогда по определению, MA перпендикулярна AC, то есть <MAC = 90°. Рассмотрим прямоугольный треугольник MAC, где AC - диагональ квадрата. MA = 5 см. Диагональ квадрата вычисляется по формуле AC = a√2, где a - длина стороны квадрата. AC = 12√2 см. по теореме Пифагора, MC = √(MA² + AC²) = √(25 + 288) = √313 см - это расстояние от точки M до вершины C.Ну и аналогично находим расстояние от точки Mдо вершины D. Для этого надо рассмотреть прямоугольный треугольник MAD и по теореме Пифагора найти гипотенузу MD. этот отрезок и является расстоянием от точки M до врешины D. Задача решена.
4,7(56 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ