1)Если периметр 12 см, то длина каждой стороны будет (12/4)=3 мм.
Тупой угол 120 гр. Тогда острый=60 градусов. Диагональ ромба делит угол пополам. Значит, получим 4 равных треугольника с острым углом 30 гр. А катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Таким образом, катет будет (3/2)=1,5 мм. Второй катет по т.Пифагора можно найти.
Теперь легко вычислить площадь прямоугольного треугольника (S=1/2*a*b), а площадь ромба будет равна 4 площадям треугольника.
Дерзайте с вычислениями!
ответ:
пошаговое решение:
1) наибольший возможный периметр будет у равнобедренного треугольника, так что, если угол при вершине равен 30°, тогда углы при основании будут равны °.
2) найдём боковую сторону по теореме синусов:
3) найдём периметр равнобедренного треугольника.
Стороны параллелограмма взаимно параллельны, и соответственные углы при параллельных сторонах равны.
Следовательно, эта диагональ является биссектрисой угла параллелограмма.
Если диагональ параллелограмма является биссектрисой его углов, то он является ромбом. (2-й признак ромба).
В ромбе диагонали пересекаются под прямым углом.
Угол равен 90°