3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).
Дуга СD = 2 * ∠СBD = 2 * 27 = 54°
Дуга AD = 2 * ∠ACD = 2 * 54 = 108°
Дуга AB = 2 * ∠ADB = 2 * 62 = 124°
Дуга BC = 360 - (54 + 108 + 124) = 74°
∠АВС опирается на дугу ADC.
Дуга АDС = дуга АD + дуга СD = 108 + 54 = 162°
∠АВС = 162/2 = 81°
∠ВСD опирается на дугу ВAD.
Дуга ВАD = дуга АВ + дуга АD = 124 + 108 = 232°
∠ВСD = 232/2 = 116°
∠АDС опирается на дугу АВС.
Дуга АВС = дуга АВ + дуга ВС = 124 + 74 = 198°
∠АDС = 198/2 = 99°
Сумма углов четырехугольника = 360°, отсюда:
∠DАВ = 360 - (81 + 116 + 99) = 64°