М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

На основании ac равнобедренного треугольника abc отмечены точки m и k так, что углы abm и cbk равны. докажите, что треугольник mbk равнобедренный. .

👇
Ответ:
Coolgirl03
Coolgirl03
04.04.2021
Треугольник АВС - равнобедренный ( по условию). значит по определению равнобедренного треугольника АВ=ВС. По св-ву медианы равнобедренного треугольника ВМ- биссектриса и высота, значит если ВМ- биссектриса, то угол АВМ = углу СВМ. для треугольников АВМ и СВМ - сторона ВМ- общая, следовательно треугольник АВМ = треугольнику СВМ ( по двум сторонам и углу между ними), т.к. ВМ- общая, АВ=ВС(по опред. равноб. треуг)., угол АВМ= углу СВМ(т.к. ВМ-биссектриса по св-ву равнб. треугольника). Что и требовалось доказать.
4,4(51 оценок)
Открыть все ответы
Ответ:
sparksfiyfdgghffgg
sparksfiyfdgghffgg
04.04.2021

Объяснение:

10) Здесь можем провести прямую через точки N и P, лежащие в одной плоскости (A1B1C1). Ее след — NP (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

Продолжим прямую NP. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и P. Еще две прямые этой плоскости — C1D1 и A1D1 . Точка пересечения A1D1 и NP — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости ( DCC1), а значит, через нее и точку M, лежащую в этой же плоскости, можно провести прямую. Прямая MS пересекает ребро DD1 в точке E. ME — ее след (видимый). Через точки P и E, лежащие в одной плоскости (DCC1), можно провести прямую, след которой — PE (видимый). В плоскости (DCC1) есть прямая PE, в параллельной ей плоскости (ABB1) — точка M. Через точку M можем провести прямую ML, параллельную PE. Она пересекает ребро BB1 в точке L. ML — след этой прямой (невидимый). Точки N и L лежат в одной плоскости (BCC1), значит, через них можно провести прямую. Ее след — NL (невидимый). Пятиугольник MLNPE — искомое сечение.

3) Здесь точки M и N лежат в одной плоскости ABS, соединяем их, получившийся след MN (видимый). Точки M и P лежат в одной плоскости APS, соединяем их, получаем прямую, след которой MP (невидимый). Точки N и P лежат в одной плоскости ABP, соединяем их, получаем прямую, след которой NP (невидимый). Треугольник NPM - искомое сечение.

Всё просто))) Надеюсь понятно объяснил


10 класс, геометрия Необходимо построить сечение двух фигур с объяснением
10 класс, геометрия Необходимо построить сечение двух фигур с объяснением
4,8(39 оценок)
Ответ:

Объяснение:

один из углов треугольника равен 2х, то второй=3х, а третий=4х.

Т.к. сумма углов треугольника=180 гр., то

2х+3х+4х=180

9х=180

х=20 (градусам)

Тогда,

1) первый угол = 2*20=40(гр.), а его внешний угол будет равным 180-40=140(гр)

2) второй угол=3*20=60 (гр.), а его внешний угол будет равным 180-60=120(гр)

3) третий угол=4*20=80(гр),, а его внешний угол будет равным 180-80=100(гр)

Следовательно внешние углы будут относится, как 140:120:100,

сокращая на 20 получим, что внешние углы треугольника относятся, как  7:6:5

4,4(23 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ