Площадь трапеции равна:S=(a+b)/2*h (произведению полусуммы оснований и высоты) b-a=14см, отсюда а=в-14; Р=сумме всех сторон. Находим боковые стороны.Для этого соединим вершины А иС.Полученный ΔАСД-равнобедренный,так какАС-биссектриссауглаС,уголВСА=углуАСД, уголВСА=углуСАД(углы при двух параллельных и секущей) . АД=СД=в Находим стороны трапеции: Р=а+в+в+в=в-14+в+в+в=4в-14; в=(Р+14)/4=100/4=25(см); а=25-14=9(см) Находим высоту трапеции:из точкиС опускаем перпендикулярСМ на основаниеАД. МД=(в-а)/2=(25-9)/2=8(см). По теоремеПифагора:СМ²=СД²-МД²;СМ=√25²-8²=√561=23,68(см). S=(9+25)/2*23.68=402.56(см²) ответ:площадь трапецииравна402,68см²
Так как пирамида правильная то боковые грани наклонены под одним углом к плоскости основания, поэтому основание высоты пирамиды лежит в центре вписанной окружности в правильный треугольник, лежащий в основании пирамиды. ЕО=4 см, ∠ЕКО=45°, ОК=r - радиус вписанной окружности.
1. В прямоугольном тр-ке ЕОК острый угол равен 45°, значит он равнобедренный. ОК=ЕО=4 см. В правильном треугольнике r=a√3/6 ⇒ a=6r/√3=2r√3. АВ=а=2·4√3=8√3 - сторона основания.
2. Сечение, проходящее через середину высоты пирамиды параллельно плоскости основания, пересекает боковые рёбра посередине, значит сечение проходит по средним линиям боковых граней, которые равны половине сторон основания пирамиды. Средняя линия равна m=АВ/2=4√3. Площадь правильного тр-ка со стороной m: S=m²√3/4=(4√3)²·√3/4=12√3 см² - площадь сечения.