3. из вешины а прямоугольника abcd восстановлен перпендикуляр ак к его плоскости, расстояние от конца которого до других вершин равны 6м, 7м и 9 м. найдите длину перпендикуляра.
Пусть х см- 1 катет, а у см- 2 катет. Тогда решим систему уравнений: 1) {х+у=11 {х^2+у^2=61 2) {х^2+2*х*у+у^2=121 {х^2+у^2=61 3) {-х^2-2*х*у-у^2=-121 {х^2+у^2=61 4) {-2*х*у=-60 {х+у=11 5) {х*у=30 {х+у=11 6) {х=11-у {(11-у)*у=30 •Рассмотрим отдельно вот это уравнение: (11-у)*у=30 -у^2+11у-30=0 D=121-4*(-1)*30=441 y1=(-11+21)/2=5 y2=(-11-21)/2=-16 Второй корень не подходит по смыслу задачи (катет не может быть отрецателен). Значит, вернёмся к системе: 7) {у=5 {х=6 Итак, катеты найдены, теперь по формуле площади прямоугольного треугольника: S=1/2*a*b, где a и b - его катеты. S=1/2*5*6=15 см^2. ответ: 15 см^2.
Обозначим КВ=6, КС=9,КД=7. Далее ДА=а, ВА=в, СА=с. Тогда по тереме Пифагора 7квадрат-а квадрат=6 квадрат -в квадрат. Отсюда а квадрат=13+в квадрат. Также верно 9 квадрат-(а квадрат+в квадрат)=6 квадрат -в квадрат. Подставляя найденное значение а квадрат=13+в квадрат, получим 9квадрат-а квадрат -в квадрат=6 квадрат - в квадрат. Или 9 квадрат-(13+ в квадрат)-в квадрат=6 квадрат-в квадрат. Отсюда в квадрат =32. Тогда АК= корень из(КВ квадрат -в квадрат)= корень из (36-32)=2.