Пусть a, b и с - стороны треугольника (с - бОльшая сторона). Треугольник будет: прямоугольным если a² + b² = c² остроугольным если a² + b² > c² тупоугольным если a² + b² < c²
Рассмотрим получившиеся треугольники АВС и АДЕ: Угол А – общий. Углы АВС и АДЕ равны как соответственные углы образованные параллельными прямыми, пересеченными секущей Значит данные треугольники подобны по первому признаку подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого треугольника, то треугольники подобны. Сторона АЕ треугольника АДЕ равна АС+СЕ: АЕ=8+4=12 см. Зная это, мы можем найти коэффициент подобия треугольников: k=АЕ/АС=12/8=1,5 Найдем стороны треугольника АДЕ: АД=АВ*k=10*1.5=15 см. ДЕ=ВС*k=4*1,5=6 см. ВД=АД-АБ=15-10=5 см. ответ: ВД=5 см. ДЕ=6 см.
Я думаю, задание надо читать так: В основании пирамиды лежит прямоугольник со сторонОЙ 6 см.Основанием высоты пирамиды является центр описанной окружности с радиусом 5 см.Найдите объем пирамиды, если ее высота равна 9 см. Тогда решение следующее: Vпир.=1/3Sосн.*h (одна третья площади основания пирамиды на высоту пирамиды). Чтобы найти площадь основания, надо найти вторую сторону прямоугольника. По т. Пифагора АВ²=АС²-ВС² АС=d=2c=10см. АВ²=100-36=64⇒АВ=√64=8см. S осн.=АВ*ВС=6*8=48см² Vпир.=1/3*Sосн*h=1/3*48*9=144cм³
прямоугольным если a² + b² = c²
остроугольным если a² + b² > c²
тупоугольным если a² + b² < c²
В данном случае: a=13, b=15, с=22
a² + b² = 13² + 15² = 169 + 225 = 394
с² = 22² = 484
394 < 484 ⇒ треугольник тупоугольный