Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 13 см.
∠ABD = 90°.
CD = 12 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 13 см*12 см
S(ABCD) = 156 см².
156 см².
ответ: 298. 32 см, 72см, 56см.
292. 23 дм.
Объяснение:
"298. Периметр треугольника равен 80 см. Стороны треугольника, образованного средними линиями данного треугольника, относятся как 4:9:7. Найдите стороны данного треугольника."
***
Пусть одна сторона треугольника, образованного средними линиями трапеции равна 4х. Тогда вторая будет 9х, а третья - 7х. Периметр этого треугольника равен 80 см.
Р=4х+9х+7х=80;
20х=80;
х=4;
4x=4*4=16 см;
9х=9*4=36 см;
7х=7*4=28 см;
Проверим:
Р=16+36+28= 80 см. Всё верно!
Средние линии треугольника равны половине основания. Значит основания равны удвоенным средним линиям.
Одна сторона равна 2*16=32 см;
Вторая сторона равна 2*36=72 см;
Третья сторона равна 2*28=56 см.
***
"292.Стороны треугольника равны 12 дм, 16 дм и 18 дм. Найдите периметр треугольника, сторонами которого являются средние линии этого треугольника."
***
АВС - треугольник. MNP - треугольник, образованный средними линиями треугольника. Каждая из них равна половине стороны ей параллельной.
MN=BC/2=16/2=8 дм.
NP=AC/2=18/2=9 дм.
MP=AB/2 =12/2=6 дм.
Р MNP=8+9+6= 23 дм.