Сторона квадрата abcd равна а. через сторону ad проведена плоскость альфа на расстоянии от точки в÷а. найдите расстояние от точки с до плоскости альфа. с рисунком
А) a/2. Очевидно, что расстояния от В и от С до плоскости равны (доказательство здесь, например, такое: BC || AD - по условию, тогда BC || плоскости, тогда расстояний до плоскости от любой из точек прямой равны).в) BA перпендикулярна AD по условию, тогда по т. о трех перпендикулярах HA перпендикулярна AD. Тогда угол BHA - линейный для нужного нам угла. BH = a/2; AB = a. sin = BH/BA=1/2б) Что за точка М
1) Если один угол равнобокой трапеции 63°, то и другой, противоположный угол будет 63°. Сумма внутренних углов трапеции = 360°. Теперь, у нас есть две стороны, найдём остальные 2: 63+63=126° - это сумма двух углов 180-126=54 - это сумма двух других углов 54:2=27 - это два других угла И того, углы трапеции равны 63;63;27;27 2) А вот у прямоугольной же трапеции имеются два угла по 90°, а также, у нас есть ещё один угол, равный 63°. Находим 4-ый угол: 90+90+63+х=360 243+х=360 х=117° Углы прямоугольной трапеции равны 90;90;63;117
АF-высота, она образует прямоугольный треугольник АВF, уголF=90° АВ-гипотенуза, АF=1/2×AВ(половине гипотенузы), значит, угол(противолежащий) В=30° или 45°( т.к. по теореме в прямоугольном треугольнике напротив этих углов лежит сторона равная половине гипотенузы). если В=45°, значит, уголА=45°, т.к. сумма острых углов треугольника =90°,FB=4,5 следовательно, проверка: по теореме Пифагора: АВ^2=АF^2+FB^2 81=20,25+FB^2 FB^2=60,75 FB=7.79422 FB≠AF значит, угол В=30° А=180-30=150°(сумма смежных углов ромба =180°).