Впараллелограмме abcd угол bad=45°.отрезок bh -- перпендикуляр ,проведенный к стороне ad .вычислите длину средней линии трапеции bhdc,если bh=hd=10см. ответьте надо!
Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
Из прямоугольного треугольника ВАН: sin ВАН = BH/AB = 5√3/10 = √3/2 Значит ∠ВАН = 60°. ∠ВСА = ∠ВАС = 60° как углы при основании равнобедренного треугольника. ∠АВС = 180° - 2·60° = 60°
ответ: все углы треугольника по 60°.
Из прямоугольного треугольника АВН по теореме Пифагора: АН = √(АВ² - ВН²) = √(100 - 25·3) = √(100 - 75) = √25 = 5 см Катет АН равен половине гипотенузы АВ, значит ∠АВН = 30°. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой, тогда ∠АВС = 60°.