Дана точка А(-1,5;2). а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от данной точки до оси 0Х. То есть это точка В(-1,5;-2). б). Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y, перпендикулярно оси 0Y, на расстоянии, равном расстоянию от данной точки до оси 0Y. То есть это точка С(1,5;2). в). Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от данной точки до начала координат. То есть это точка D(1,5;-2).
Трапеция АВСД: основания АД=а и ВС=b. Отрезок ЕМ параллелен АД и ВС делит трапецию на 2 равновеликие трапеции Sаемд=Sевсм=Sавсд/2/ Обозначим ЕМ=х. Опустим из вершины В высоту ВН=h на основание АД, она пересекает ЕМ в точке О: ВН=ВО+ОН=h₁+h₂ Sаемд=(АД+ЕМ)*ОН/2=(а+х)*h₂/2 Sевсм=(ЕМ+ВС)*ВО/2=(х+b)*h₁/2 Sавсд=(АД+ВС)*ВН/2=(а+b)*h/2=(а+b)*(h₁+h₂)/2 Составим систему уравнений: 1) Sаемд=Sевсм 2) 2Sаемд=Sавсд Подставляем: 1) (а+х)*h₂/2=(х+b)*h₁/2 или h₂/h₁=(х+b)/(х+а) 2) 2*(а+х)*h₂/2=(а+b)*(h₁+h₂)/2 или 2(а+х)=(а+b)*(h₁+h₂)/h₂ 2(а+х)=(а+b) * (h₁/h₂+1) 2(а+х)=(а+b) * ( (х+а)/(х+b) + 1) 2(а+х)(х+b)=(а+b) * (х+а+х+b) 2(а+х)(х+b)=(а+b)²+2х(а+b) 2ах+2х²+2аb+2xb=a²+2ab+b²+2ax+2xb 2x²=a²+b² x=√(a²+b²)/2 ответ: √(a²+b²)/2