Объяснение:8,3 и 24,9.
Отметим основание через х тогда боковая будет 3х. Периметр это сумма всех сторон. Треугольник равнобедренный. Боковые стороны равны .
Х+3х+3х=58,1
7х=58,1
Х=8,3 значит: 3х = 8,3*3=24,9.
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.
Решаем через уравнение.
Треугольник АВС равнобедренный =>АВ=ВС
Возьмём основание АС за х
АВ больше в 3 раза => АВ=3х
АВ=ВС=>ВС=3х
3х+3х+х=7х
Ищем сколько приходиться на одну сторону
Х=58.1 : 7
Х=8.3см
АВ= 8.3 * 3=24.9
АВ=ВС=>Вс = 24. 9
ответ :24.9