Угол между прямыми CC1 и AB1 это ∠DC1C. Найдем его из прямоугольного треугольника CC1D По теореме Пифагора С1D=√8²+6²=√100=10 Тогда sin∠CC1D=CD/C1D=6/10=0,6.
1. Если один из углов прямоугольного треугольника равен 30 гр,то противолежащий этому углу катет равен половине гипотенузы. ВС = АВ /2 ВС = 8/2 = 4 см
2. соs C = BC/AC cos C = √3/2 угол С = 30 градусов
3. а = 24 см катет с = 25 см гипотенуза b^2 = c^2 - a^2 b^2 = 25^2 - 24^2 = 625 - 576 = 49 b = 7 cm P = a +b+c P = 24+25+7 = 56 cm
4. BC =4√2 AC = 5 AB^2 = BC^2 - AC^2 AB^2 = (4√2)^2 -5^2 = 32 -25 = 7 AB = √7 sin B = AC/BC sin B = 5/ 4√2 =5/ 5.66 = 0.88339 угол В = 62 градусов угол С = 180 -угол А -угол В угол С = 180 -90 - 62 угол С = 28 градуса
или cos C = AC/BC cos C = 5/4√2 = 0.88339 угол С = 28 градусов
Если взять координатные оси, отложить от точки из пересечения (начала координат) отрезки длины 5 (по одному вдоль каждой из осей, конечно, и "в положительном направлении") и провести через три полученные точки плоскость, как раз получится такая пирамида, как в условии. Её объем легко сосчитать V = (1/3)*(5*5/2)*5 = 25/6; (На гранях пирамид нигде не написано "основание" или "боковая грань". Никто не мешает выбрать основание самому.) Если размеры пирамиды уменьшить в 2 раза, то объем уменьшится в 8 раз, поэтому ответ 25/48;
По теореме Пифагора С1D=√8²+6²=√100=10
Тогда sin∠CC1D=CD/C1D=6/10=0,6.