М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aruukealtymysh
aruukealtymysh
15.09.2020 02:26 •  Геометрия

Один острый угол прямоугольного в 2 раза больше другого.найдите меньший острый угол

👇
Ответ:
аня11188
аня11188
15.09.2020
Решим через уравнение: x- это меньший средний угол, поэтому:
X + 2X + 90= 180
3X = 180-90
3X = 90
X = 90 ÷ 3
X = 30
4,7(48 оценок)
Открыть все ответы
Ответ:
AkaneSan
AkaneSan
15.09.2020
1). Построим описанную окружность с центром в т. М
     Угол ∠АМС - центральный, опирающийся на ту же дугу АС,
     что и угол ∠АВС.
     Следовательно:   ∠АМС = 2*∠АВС = 2*15 = 30°

     В ΔМНС:  CH = MC*sin30° = MC/2

     Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4
                                           CH:AB = 1:4 

2). В ΔАВС:    cos∠ABC = BC/AB = BC/2MC  =>
                                        => BC = 2MC*cos15°
   
     В ΔМНС:   МН = МС*cos30° = MC*√3/2
                                  
Тогда:  \displaystyle MH:BC= \frac{2MC*cos15}{MC* \sqrt{3}/2}= \frac{4cos15}{ \sqrt{3}}= \frac{4 \sqrt{3}}{3}cos15

Впрямоугольном треугольнике abc угол b равен 15 градусов из вершины прямого угла c проведены высота
4,4(18 оценок)
Ответ:
anay3
anay3
15.09.2020
Теорема 1
ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ.
Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.

Доказательство:
Пусть а прямая, перпендикулярная прямым b и c в плоскости . Тогда прямая а проходит через точку А пересечения прямых b и c. Докажем, что прямая а перпендикулярна плоскости .
Проведем произвольную прямую х через точку А в плоскости и покажем, что она перпендикулярна прямой а. Проведем в плоскости произвольную прямую, не проходящую через точку А и пересекающую прямые b, c и х. Пусть точками пересечения будут В, С и Х.
Отложим на прямой а от точки А в разные стороны равные отрезки АА1 и АА2. Треугольник А1СА2 равнобедренный, так как отрезок АС является высотой по условию теоремы и медианой по построению (АА1=АА2). по той же причине треугольник А1ВА2 тоже равнобедренный. Следовательно, треугольники А1ВС и А2ВС равны по трем сторонам.
Из равенства треугольников А1ВС и А2ВС следует равенство углов А1ВХ и А2ВХ и, следовательно равенство треугольников А1ВХ и А2ВХ по двум сторонам и углу между ними. Из равенства сторон А1Х и А2Х этих треугольников заключаем, что треугольник А1ХА2 равнобедренный. Поэтому его медиана ХА является также высотой. А это и значит, что прямая х перпендикулярна а. По определению прямая а перпендикулярна плоскости . Теорема доказана.
4,8(76 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ