М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Katykazazaeva
Katykazazaeva
14.03.2022 07:06 •  Геометрия

Вокружности радиуса 13см проведена хорда на расстоянии 5 см от центра окружности. найдите длину хорды.

👇
Ответ:
IceBand252
IceBand252
14.03.2022
Решение прикреплено..........
Вокружности радиуса 13см проведена хорда на расстоянии 5 см от центра окружности. найдите длину хорд
4,6(49 оценок)
Открыть все ответы
Ответ:
Nenormalnyi
Nenormalnyi
14.03.2022
Так как пирамида правильная то боковые грани наклонены под одним углом к плоскости основания, поэтому основание высоты пирамиды лежит в центре вписанной окружности в правильный треугольник, лежащий в основании пирамиды.
ЕО=4 см, ∠ЕКО=45°, ОК=r - радиус вписанной окружности.

1. В прямоугольном тр-ке ЕОК  острый угол равен 45°, значит он равнобедренный. ОК=ЕО=4 см.
В правильном треугольнике r=a√3/6 ⇒ a=6r/√3=2r√3.
АВ=а=2·4√3=8√3 - сторона основания.

2. Сечение, проходящее через середину высоты пирамиды параллельно плоскости основания, пересекает боковые рёбра посередине, значит сечение проходит по средним линиям боковых граней, которые равны половине сторон основания пирамиды.
Средняя линия равна m=АВ/2=4√3.
Площадь правильного тр-ка со стороной m:
S=m²√3/4=(4√3)²·√3/4=12√3 см² - площадь сечения.
Боковая грань правильной треугольной пирамиды наклонена до плоскости основы под углом 45 градусов .
4,6(22 оценок)
Ответ:
welouk
welouk
14.03.2022

Докажите, что: 

а)

 середины сторон прямоугольника являются вершинами ромба.

В прямоугольнике все углы прямые, противоположные стороны равны и параллельны, а диагонали равны и точкой пересечения делятся пополам.

Пусть данный прямоугольник АВСD, точки К, М, Н, Т - соответственно середины АВ, ВС, СD, DА. 

Соединим  последовательно точки К, М, Н и Т

Треугольники КАТ, КВМ, МСН  и НDТ прямоугольные, в каждом один катет равен половине меньшей стороны, другой - половине большей стороны. Следовательно, эти треугольники равны, отсюда равны их гипотенузы: КМ=МН=НТ=ТК. 

КМНТ - четырехугольник, все стороны которого равны (признак ромба).

Кроме того,  диагонали  КН║ВС и МТ║АВ. 

В прямоугольнике стороны пересекаются под прямым углом, следовательно, параллельные им диагонали КН и МТ тоже пересекаются под прямым углом - признак ромба. 

Четырехугольник КМНТ - ромб, и его вершинами являются середины сторон прямоугольника, что и требовалось доказать.  

------------------

  б) 

 середины сторон ромба являются вершинами прямоугольника.         

Пусть дан ромб АВСD, точки КМНТ - середины его сторон. Соединим их последовательно. 

Диагонали ромба АС и ВD пересекаются в точке О под прямым углом и  каждая делит ромб на два равных треугольника.   АК=КВ, ВМ=МС, СН=НD и DТ=ТА.  ⇒

 КМ и ТН -   средние линии треугольников  АВС и СDТ и параллельны диагонали АС ромба. 

КМ=ТН

Аналогично ТК и МН - средние линии треугольников АВД и СВD и параллельны диагонали ВD ромба. 

КТ=МН. 

Стороны четырехугольника ТКМН параллельны и равны - КМНТ - параллелограмм. 

Диагонали ромба точкой их пересечения делятся пополам и, пересекаясь,  делят четырехугольник ТКМН на 4 равных параллелограмма, углы которых при точке пересечения диагоналей ромба О прямые. ⇒

Углы  К, М, Н и Т этих четырех параллелограммов, противоположны углам при О и по свойству углов параллелограмма равны им. Следовательно, четырехугольник ТКМН - параллелограмм, все гулы которого - прямые. 

ТКМН - прямоугольник, что и требовалось доказать. 


Докажите, что середины сторон прямоугольника являются вершинами ромба. и наоборот, середины сторон р
4,5(4 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ