Объяснение:
1) знайдемо більшу сторону основи : 5²+12²=25+144=169 √=13 см , знайдемо площу основи , 1/2*5*12=30 см² , основ дві тому 2*30=60 см², шукаємо площі бічних сторін: 12*10+5*10+13*10=120+50+130=300 см²
тепер все разом: 300+60=360 см²
3) розрізали ціліндр по осі, в перерізі маємо квадрат, сторона якого є діаметром, площа квадрата за умовою є36 см², тому сторона квадрата(діаметр) буде 6 см. Тепер шукаємо площі основ і бокову поверхню циліндра. В основі циліндра є площа круга , S круг.=πД²/4=π6²/4=18πсм² основ двы , тому площа основ = 36π см², бокова поверхня циляндра є прямокутник , основа якого є довжина кола * на висоту . С=π*Д=6π а так як висота теж дорівнює діаметру, маємо бокову поверхню 36π Площа повної поверхні буде:36π+18π=54 π
Теорема 1. В треугольнике против большей стороны лежит больший угол.
Доказательство. Пусть в треугольнике ABC сторона АВ больше стороны АС (рис.1, а).
Рис.1
Докажем, что ∠ С > ∠ В. Отложим на стороне АВ отрезок AD, равный стороне АС (рис.1, б). Так как AD < АВ, то точка D лежит между точками А и В. Следовательно, угол 1 является частью угла С и, значит, ∠ C > ∠ 1. Угол 2 — внешний угол треугольника BDC, поэтому Z 2 > Z В. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, ∠ С > ∠ 1, ∠ 1 = ∠ 2, ∠ 2 > ∠ B. Отсюда следует, что ∠ С > ∠ В.
Справедлива и обратная теорема (ее доказательство проводится методом от противного).
Теорема 2. В треугольнике против большего угла лежит большая сторона.
Из теоремы 1 вытекает
Следствие 1. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).
Доказательство следствия проводится методом от противного.
Из следствия 1 следует, что если три угла треугольника равны, то треугольник равносторонний.
Из теоремы 2 получаем
Следствие 3. В прямоугольном треугольнике гипотенуза больше катета.
С использованием теоремы 2 устанавливается следующая теорема.
Теорема 3. Каждая сторона треугольника меньше суммы двух других сторон.
Следствие 4. Для любых трех точек А, В и С, не лежащих на одной прямой, справедливы неравенства:
АВ < АС + СВ, АС < АВ + ВС, ВС < ВА + АС.
^-^