Высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому проекций катетов на гипотенузу(или среднему геометрическому тех отрезков на которые высота разбивает гипотенузу).
Можно также использовать ещё одно свойство высоты из прямого угла.
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
Если высоту обозначить х, то из подобия треугольников составляем пропорцию: х/4 = 9/х, х² = 36, х = 6 см.
Объяснение:Если h- апофема пирамиды, то (а/2)2= 15² - 12²=225-144=81, ⇒а/2=9, ⇒ сторона основания а =18 (см). Площадь боковой поверхности S = p·h , где р- полупериметр основания; р= 36 (см), h= 12 cм, ⇒ S = 36·12= 432 (cм²) Объем пирамиды V равен одной трети произведения площади основания на высоту: где S₀ – площадь основания, H – высота пирамиды. S₀=a² = 18₂=324 (cм²); H² = h²- (a/2)² = 12² - 9² =144-81 =63, ⇒ H=√63= 3√7 (см), ⇒ V= (1/3) · 324 ·3√7=324√7 (cм³)
Подробности на картинке))