Для любого выпуклого четырехугольника отрезки, соединяющие середины смежных сторон этого четырехугольника, образуют параллелограмм. Для этого проведем одну из диагоналей: она разбивает четырехугольник на два треугольника, средние линии которых равны и параллельны, (как средние линии параллельные основанию, равные половине диагонали), и эти две средние линии являются противоположными сторонами искомого параллелограмма. Для второй диагонали - проделываем то же самое. В итоге, в равнобедренной трапеции диагонали равны, а значит равны и все стороны искомого параллелограмма, который поэтому и является ромбом.
Эту задачу можно решить разными Один дан в первом решении. Пусть данный треугольник будет АВС, ВН- высота к основанию. АК - высота к боковой стороне. В прямоугольном треугольнике СВН катет ВН относится к гипотенузе СВ как 4:5, ⇒ Δ СВН - египетский и СН=3 ( то же получится и по т. Пифагора) 1. Проведем НМ перпендикулярно ВС Δ ВНС ~ Δ НМС - прямоугольные с общим углом при С. Из подобия НС:ВС=МН:ВН⇒ 3:5=МН:4 ⇒ МН=2,4 В равнобедренном треугольнике АВС высота и медиана ВН делит АС пополам. В треугольнике АКС отрезки АН=НС, МН параллельна АК ⇒ МН средняя линия △АКС АК=2 МН=2*2,4=4,8 ------- 2. Пусть ВК=х, тогда КС=5-х. АК²=АВ²-ВК² АК²=АС²-КС² АВ²-ВК²=АС²-КС² 25-х²=36-25+10х-х² 10х=50-36=14 х=1,4 АК²=АВ²-ВК² АК=√( 25-1?96)=4,8
правда, площадь получилась отрицательной, но это не страшно, ответ
S = 77/(2√2)