Дано: a и в лежат в одной полуплоскости относительно прямой a; am ┴ а; вк ┴ а. am = вк. доказать: ак = вм. докозательство: по условию am ┴ а тогда ∟амк = 90 °. аналогично, если вк ┴ а тогда ∟вкм = 90 °. рассмотрим δамк и δвкм: 1) ∟амк = ∟bкm = 90 °; 2) am = bк (по условию) 3) мк - общая сторона. по признаку pавности прямоугольных треугольников имеем: δамк = δвкм. отсюда ак = вм
Красный, синий и большой треугольники подобны - одинаковый острый угол, и прямой x/z = 9/16 z/y = 9/16 y = 16z/9 x = 9z/16 Теорема Пифагора для красного треугольника x² + z² = 9² (9z/16)² + z² = 9² 81/256*z² + z² = 81 (81 + 256)/256*z² = 81 337z² = 81*256 z² = 81*256/337 z = 9*16/√337 = 144/√337 см x = 9z/16 = 81/√337 см y = 16z/9 = 256/√337 см Малый катет большого треугольника x + z = (144 + 81)/√337 = 225/√337 см Большой катет большого треугольника y + z = (256 + 144)/√337 = 400/√337 см Площадь S = 1/2*225/√337*400/√337 = 45000/337 см²
Красный, синий и большой треугольники подобны - одинаковый острый угол, и прямой x/z = 9/16 z/y = 9/16 y = 16z/9 x = 9z/16 Теорема Пифагора для красного треугольника x² + z² = 9² (9z/16)² + z² = 9² 81/256*z² + z² = 81 (81 + 256)/256*z² = 81 337z² = 81*256 z² = 81*256/337 z = 9*16/√337 = 144/√337 см x = 9z/16 = 81/√337 см y = 16z/9 = 256/√337 см Малый катет большого треугольника x + z = (144 + 81)/√337 = 225/√337 см Большой катет большого треугольника y + z = (256 + 144)/√337 = 400/√337 см Площадь S = 1/2*225/√337*400/√337 = 45000/337 см²