Рассмотрим треугольник EFA У него даны две стороны Третью стороны мы находил либо через теорему Пифагора ( c 2 = a2 +b2) либо мы видим что это египетский треугольник Следовательно третья сторона равна 8. Сторона CA =CF+FA Следовательно CA=12+8=20 Рассмотрим треугольники BCA и EFA Угол С и угол F прямые и они равны Угол А общие Следовательно эти треугольники подобны по двум углам y мы уже нашли ( он равен 8) Находим k(коэффициент подобия) .Его находясь через отношения сторон подобных треугольников. В нашем случае берём сторону САМ и FA . Их отношения равно 3/4 ( следовательно k=3/4) Находим x -? Этой стороне подобна сторона EF
Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°