Вот то, что проходит через острые углы. Они будут 180 -150 = 30 градусов. Нужно начертить, и все станет понятно. Параллелепипед в сечении - прямоугольник. Чем больше одна сторона, при остальных одинаковых, тем больше площадь. Возьми кусок пластина слепи параллелепипед и проверь. Смочи нож и режь. Сухим ножом разрезать не получится.
Дано: круг с центром А радиусом R = 15см; круг с центром D радиусом R =15 см; AD = 15 см Найти: площадь криволинейной фигуры CABD
Криволинейная фигура CABD состоит из двух сегментов: CAB и CDB. Достаточно найти площадь одного из них, например, CAB.
ΔACD = ΔABD: AB = BD = AC = CD = AD = R = 15 см ⇒ ∠CAD = ∠BAD = ∠CDA = ∠BDA = 60° ⇒ ∠BAC= ∠BDC = 2*60° = 120° Площадь сегмента CAB равна площади сектора DCAB минус площадь треугольника DCB.
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Нужно начертить, и все станет понятно.
Параллелепипед в сечении - прямоугольник. Чем больше одна сторона, при остальных одинаковых, тем больше площадь.
Возьми кусок пластина слепи параллелепипед и проверь. Смочи нож и режь. Сухим ножом разрезать не получится.