М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ovenovsp00yl2
ovenovsp00yl2
18.05.2020 02:16 •  Геометрия

Точки к и р - середины боковых сторон ав и ас равнобедренного треугольника авс. докажите, что треугольник акс = треугольнику арв.

👇
Ответ:
oganyanrobert
oganyanrobert
18.05.2020

Признаешь лучшим, решу. Т.к. треугольник равнобедренный, то боковые стороны равны, а значит равны и их половины, Т.е. КА=РА.  угол А - общий  АС=ВА как стороны равнобедренного треугольника. Значит треугольники равны по двум сторонам и углу между ними.

4,4(34 оценок)
Открыть все ответы
Ответ:
vorler
vorler
18.05.2020
Сделаем рисунок. 
АВ - общая касательная. 
IJ-  отрезок, соединяющий центры. 
О - точка пересечения этого отрезка и касательной. 
IA - радиус большей окружности,  JB - радиус меньшей окружности. 
Вариант решения 1)
Как радиусы, проведенные в точку касания, IA  и  JB  перпендикулярны  касательной АВ.
Прямоугольные треугольники OIA  и OJB подобны по двум углам - прямому и вертикальному при О. Все стороны этих треугольников имеют коэффициент подобия
k=m:n ⇒
IA:JB=m:n
Ясно, что отношение диаметров данных  окружностей равно отношению их радиусов,  т.е. АС:ВD=m:n.

Вариант решения 2)
СА ⊥АВ 
BD ⊥АВ ⇒
СА и BD- параллельны.
Углы С и D равны как накрестлежащие при пересечении параллельных прямых секущей.. Углы при О равны, как вертикальные. 
Треугольники АСO и  DBO подобны по трем углам. 
OI OJ- медианы этих треугольников. 
Отношение длин соответствующих элементов подобных треугольников (в частности,  длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.
 Следовательно, отношение диаметров данных окружностей ( гипотенуз треугольников) равно отношению их медиан, т.е. АС:ВD=m:n.
Окружности с центрами в точках i и j не имеют общих точек. внутренняя общая касательная к этим окруж
4,6(35 оценок)
Ответ:
бернер
бернер
18.05.2020
Сделаем рисунок. 
АВ - общая касательная. 
IJ-  отрезок, соединяющий центры. 
О - точка пересечения этого отрезка и касательной. 
IA - радиус большей окружности,  JB - радиус меньшей окружности. 
Вариант решения 1)
Как радиусы, проведенные в точку касания, IA  и  JB  перпендикулярны  касательной АВ.
Прямоугольные треугольники OIA  и OJB подобны по двум углам - прямому и вертикальному при О. Все стороны этих треугольников имеют коэффициент подобия
k=m:n ⇒
IA:JB=m:n
Ясно, что отношение диаметров данных  окружностей равно отношению их радиусов,  т.е. АС:ВD=m:n.

Вариант решения 2)
СА ⊥АВ 
BD ⊥АВ ⇒
СА и BD- параллельны.
Углы С и D равны как накрестлежащие при пересечении параллельных прямых секущей.. Углы при О равны, как вертикальные. 
Треугольники АСO и  DBO подобны по трем углам. 
OI OJ- медианы этих треугольников. 
Отношение длин соответствующих элементов подобных треугольников (в частности,  длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.
 Следовательно, отношение диаметров данных окружностей ( гипотенуз треугольников) равно отношению их медиан, т.е. АС:ВD=m:n.
Окружности с центрами в точках i и j не имеют общих точек. внутренняя общая касательная к этим окруж
4,4(66 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ