Объяснение:
Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого
Объяснение:
Определение
Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.
Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .
Приведем классические и важнейшие известные примеры ГМТ.
Пример
Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).
Пример
Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.
Пример
Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.
Пример
Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".
Утверждение
ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств
Я получил замечание, за элементарное решение этой задачи:)))
Выглядело оно так
"Вообще-то косинус половины центрального угла этой хорды равен 1/2"
или как-то похоже. Я бы вставил точный текст, но тут нельзя :))
Поясню решение.
Центральный угол хорды вместе с ней образует равнобедренный треугольник, боковые стороны равны радиусу. Опушенная из центра окружности на хорду высота (она же медиана и биссектриса) равна половине радиуса. Это задано по условию. Следовательно, угол между этой высотой и боковой стороной (радиусом) имеет косинус, равный 1/2, то есть равен 60 градусам. Поэтому центральный угол, соответствующий хорде, равен 120 градусам. То есть хорда отсекает треть окружности. Собственно, задача уже решена, поскольку сторона равностороннего треугольника, вписанного в эту окружность, тоже отсекает от окружности ровно треть.
Всё это пояснение совершенно эквивалентно забаненой фразе. Я сожалею о своей ошибке, глубоко раскаиваюсь и обещаю впредь не совершать ничего подобного :