Хорда параллельна одному их диаметров. Второй диаметр проходит через середину хорды и центр окружности, являющийся серединой диаметра.
Это означает, что у двух диаметров есть одна общая точка-центр окружности. Аксиома гласит, что через данную точку плоскости (центр окружности в нашем случае) можно провести перпендикуляр к данной прямой только один. Вывод: Существует только ещё 1 диаметр перпендикулярный первому диаметру.
Другая аксиома гласит: "Два перпендикуляра к одной и той же прямой параллельны между собой. "У нас параллельны хорда и один из диаметров, то они и является теми двумя перпендикулярами к одной и той же прямой (проходящей через второй диаметр). И хорда, и первый диаметр являются перпендикулярами ко второму диаметру. Что и следовало доказать.
Модуль, это длина вектора. СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго. РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). Исходя из этого: 1) |AB+BC|=|AC|, то есть |AB+BC|= а. 2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3. |AB+AC|=а*√3. 3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1. |AB+CB|=а*√3. 4) |ВА-ВC|=|CA|=а. 5) |АВ-АC|=|CВ|=а.
Хорда параллельна одному их диаметров. Второй диаметр проходит через середину хорды и центр окружности, являющийся серединой диаметра.
Это означает, что у двух диаметров есть одна общая точка-центр окружности. Аксиома гласит, что через данную точку плоскости (центр окружности в нашем случае) можно провести перпендикуляр к данной прямой только один. Вывод: Существует только ещё 1 диаметр перпендикулярный первому диаметру.
Другая аксиома гласит: "Два перпендикуляра к одной и той же прямой параллельны между собой. "У нас параллельны хорда и один из диаметров, то они и является теми двумя перпендикулярами к одной и той же прямой (проходящей через второй диаметр). И хорда, и первый диаметр являются перпендикулярами ко второму диаметру. Что и следовало доказать.