найдем координаты середины диагоналей четырехугольника ABCD:
середина диагонали АС
x=(0+5)/2=2.5
y=(1+1)/2=1
(2.5;1)
середина диагонали BD
x=(4+1)/2=2.5
y=(3+(-1))/2=1
(2.5;1)
таким образом диагонали четырехугольника пересекаются в точке, что делит их пополам, поэтому за признаком парарлелограмма четырехугольник АВСD - парареллограм
найдем длины диагоналей
AC=((5-0)^2+(1-1)^2)=5
BD=((4-1)^2+(-1-3)^2)=5
диагонали параллелограма ABCD равны АC=BD, за признаком прямоугольника ABCD- прямоугольник. Доказано
Подробнее - на -
Объяснение:
Пусть ОН=х, тогда АО=2х
ΔАОН - прямоуг. (∠АНО=90°)
ОН=1/2 АО => ∠ОАН=30°
∠АОН=90°-∠ОАН=90°-30°=60°
ΔАВО - р/б (ОА=ОВ=r)
ОН⊥АВ => ОН - биссектриса ΔАВО
∠АОН=∠НОВ=60°
∠АОВ=∠АОН+∠НОВ=60°+60°=120°