Поскольку основания трапеции параллельны, угол между диагональю и нижним основанием=углу между диагональю и верхним основанием (как накрест лежащие), раз она делит прямой угол пополам то угол между боковой стороной и диагональю так же будет равен углу между меньшим основанием и диагональю = 45°, у тебя получается равнобедренный треугольник, из него получаешь что перпендикулярная основаниям боковая стороны = 20см. Далее проводишь перпендикуляр к большему основанию из вершины меньшего, получается прямоугольный треугольник. катет и гипотенуза известны, по теореме пифагора находишь оставшийся катет, складываешь его длину с длиной меньшего основания и получаешь длину другого основания, а затем находишь площадь по формуле S=1/2(а+b)h, где h- высота трапеции (20), а и b-основания
PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.