возьмём треугольник авс (ав=вс). Так как треугольник равнобедренный по условию, тогда углы при основании будут равны (180-120)/2=30 градусов.
Дальше по теореме синусов ас/sinb=bs/sina. то есть:
х/sin120=12/sin30
Тогда х=(12*sin120)/sin 30=(12*(корень из 3)/2)*2/1=12 корень из 3.
Проведём высоту вн. Так как треугольник равнобедренный, высота будет медианой и ан=нс=12 корень из 3/2=6 корень из 3.
Рассмотрим прямоугольный треугольник авн, образованный высотой вн и стороной ав, где ав=12 см по условию, а ан=6 корень из 3. По теореме Пифагора найдём длину катета вн.
аb^2=ah^2+bh^2
bh^2=ab^2-ah^2
bh^2=144-108
bh^2=36
bh=6 см
ответ: 6 см.
возьмём треугольник авс (ав=вс). Так как треугольник равнобедренный по условию, тогда углы при основании будут равны (180-120)/2=30 градусов.
Дальше по теореме синусов ас/sinb=bs/sina. то есть:
х/sin120=12/sin30
Тогда х=(12*sin120)/sin 30=(12*(корень из 3)/2)*2/1=12 корень из 3.
Проведём высоту вн. Так как треугольник равнобедренный, высота будет медианой и ан=нс=12 корень из 3/2=6 корень из 3.
Рассмотрим прямоугольный треугольник авн, образованный высотой вн и стороной ав, где ав=12 см по условию, а ан=6 корень из 3. По теореме Пифагора найдём длину катета вн.
аb^2=ah^2+bh^2
bh^2=ab^2-ah^2
bh^2=144-108
bh^2=36
bh=6 см
ответ: 6 см.
AC=48 cm
tgB=3 3/7
RESHENIE:
tgB=AC:CB
3 3/7=48:CB
CB=14 cm
Po teoreme Pifagora:
AB^2=AC^2+CB^2
AB^2=(48)^2+(14)^2
AB^2=2304+196
AB^2=2500
AB= 50 cm
OTVET: 14 cm, 50 cm