Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
Пусть АВСД - трапеция, у которой углы В и С - прямые (АВ - большее основание, СД - меньшее основание) . Проведем из тупого угла Д высоту на основание АВ (получим точку Е) , а из центра вписанной окружности - перпендикуляры (радиусы) на сторону АД и основание СД. Получим точку М (на основании СД) и точку N - на стороне АД. МД=NД = 4. Тогда АЕ = (АВ+R - СД-R) = 25-4=21. Из прямоугольного треугольника АДЕ по теореме Пифагора находим высоту трапеции: = (29^2-21^2)^(1/2)=20. Одновременно это и диаметр вписанной окружности. Тогда СД =СМ+МД= 10+4=14, АВ=10+25=35. Площадь трапеции: (14+35)*20/2=490.