Рассмотрим треугольник АВС с прямым углом В.Угол А=альфа, угол В=бетта. Высота ВН разбивает гипотенузу АС на 2 части.АС=АН+НСНайдём отдельно АН и НС выразив их через тангенс угла А и угла В. Так как ВН высота, то треугольник АВН прямоугольный. Выразим АН через тангенс угла А.tgA=BH/AH, AH= BH/tgA = 4/tg альфа.Выразим также НС через тангенс угла С в прямоугольном треугольнике ВНС.tgС=ВН/НС, НС=ВН/tgС= 4/tg бетта.Тогда АС= 4/tg альфа + 4/tg бетта
В равнобедренном треугольнике две равные стороны называются боковыми, а третья - основанием треугольника. Точка пересечения равных сторон — вершина равнобедренного треугольника. Угол между одинаковыми сторонами считается углом при вершине, а два других — углами при основании треугольника. Являются доказанными такие свойства равнобедренного треугольника: - равенство углов при основании, - совпадение проведенных из вершины биссектрисы, медианы и высоты с осью симметрии треугольника, - равенство между собой двух других биссектрис (медиан, высот), - пересечение биссектрис (медиан, высот), проведенных из углов при основании, в точке, лежащей на оси симметрии. Наличие одного из этих признаков является доказательством того, что треугольник равнобедренный.