Насколько я поняла задачу, рисунок должен быть таким, как представлен в приложенном файле, тогда решение такое: АК, ВК-касательные к окружности, по свойству касательных прямая КО является биссектрисой угла К, значит ∠ОКВ=120/2=60°, ∠КОВ=90-60=30°, треугольник ОКВ-прямоугольный, значит гипотенуза равна двум катетам, лежащим против угла в 30 градусов. ОК=2ВК, ВК=АК-как отрезки касательных, проведенных к окружности из одной точки. ⇒ АК+ВК=ОК
д) Аналогично ∠(OA, OC) = 90°, т.к. угол между диагоналями равен 90°;
е) Векторы AC и BD сонаправлены, значит, угол между ними равен 0°.
ж) Переносим вектор DB параллельным переносом так, чтоб его начало совпадало с точкой А. Тогда ∠(AD, DB) = 135°.
з) Переносом вектор OC параллельны переносом так, чтоб его начплао совпадало с точкой А. Угол между векторами остался таким жеч как и угол между диагоналями, т.е. 90°.
д) Аналогично ∠(OA, OC) = 90°, т.к. угол между диагоналями равен 90°;
е) Векторы AC и BD сонаправлены, значит, угол между ними равен 0°.
ж) Переносим вектор DB параллельным переносом так, чтоб его начало совпадало с точкой А. Тогда ∠(AD, DB) = 135°.
з) Переносом вектор OC параллельны переносом так, чтоб его начплао совпадало с точкой А. Угол между векторами остался таким жеч как и угол между диагоналями, т.е. 90°.
АК, ВК-касательные к окружности, по свойству касательных прямая КО является биссектрисой угла К, значит ∠ОКВ=120/2=60°, ∠КОВ=90-60=30°, треугольник ОКВ-прямоугольный, значит гипотенуза равна двум катетам, лежащим против угла в 30 градусов.
ОК=2ВК, ВК=АК-как отрезки касательных, проведенных к окружности из одной точки. ⇒
АК+ВК=ОК