1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
по свойству вписанного угла он равен 1/2 ∪СВ.
∠СОВ-центральный, опирается на дугу СВ,
по свойству центрального угла он равен ∪СВ,
значит
∠САВ=1/2∠СОВ.
АО=СО=ОВ-как радиусы одной окружности.
Тогда ∠АОС=180-2∠САВ⇒
∠СОВ=180-∠АОС=180-(180-2∠САВ)=180-180+2∠САВ=2∠САВ⇒
∠САВ=1/2∠СОВ
Прикреплен еще один рисунок.