А(- 1; 6), В(- 1; - 2)
Найдем длину диаметра по формуле расстояния между точками:
АВ = √((x₁ - x₂)² + (y₁ - y₂)²) = √((- 1 + 1)² + (6 + 2)²) = √(0 + 64) = 8.
Тогда радиус равен:
R = AB/2 = 4
Координаты центра найдем как координаты середины отрезка АВ:
x₀ = (x₁ + x₂)/2, y₀ = (y₁ + y₂)/2
x₀ = (- 1 - 1)/2 = - 1, y₀ = (6 - 2)/2 = 2
О(- 1; 2)
Уравнение окружности:
(x - x₀)² + (y - y₀)² = R²
(x + 1)² + (y - 2)² = 16
Уравнение прямой, проходящей через центр окружности и параллельной оси Ох:
у = 2.
Уравнение прямой, проходящей через центр окружности и параллельной оси Оу:
х = - 1.
Відповідь:
Пояснення:
Необходимо проверить чтоби сумма двух любих отрезков била большей за третий отрезок, иначе △ не прстроить.
Построение:
А) На прямой откладиваем отрезок АВ( или любой другой)
С циркуля отмеряем длину АС и с точки А рисуем окружность с етим радиусом.
С точки В рисуем окружность с радиусом ВС.
Точкой пересечения етих окружностей будет вершина С
Б) проведем перпендикуляр к ВС
З вершини В и С проводим окружности, с радиусом прилегающих сторон ВА и СА соответственно. Соединив точки пересечения етих окружностей имеем перпендикуляр- висоту к ВС.
Диагонали ромба относятся как 3:4, а его сторона 25 см. Найти площадь ромба.
ответ: 600 см²
Объяснение: Примем коэффициент отношения диагоналей ромба равным а. Тогда меньшая диагональ равна 3а, большая - 4а.
Ромб - параллелограмм. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. ⇒
(3а)²+(4а)²=4•25² ⇒ 25а²=4•25•25 ⇒ а=√100=10 см Тогда диагонали равны 3•10=30 см и 4•10=40 см.
Площадь ромба равна половине произведения его диагоналей: Ѕ=30•40:2=600 см²