Задачу можно решить с простейшим рисунком, советую сделать его.
Если два отрезка пересекаются в их общей середине, значит, каждый из них точкой пересечения делится пополам. Обозначим эту точку буквой М.
Соединив свободные концы А иС, В и D отрезков, получим 2 равных теугольника
СМА и ВМD. Они равны по первому признаку равенства треугольников ( если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого, то эти треугольники равны).
У этих треугольников равны стороны ( по половине отрезков в каждом) и вертикальный угол. Отсюда следует, что у них равны углы, лежащие против равных сторон.Равные углы при С и D являются в то же время накрестлежащими при пересечении двух прямых АС и ВD третьей (СD). Поэтому прямые АС и ВД параллельны.
1)Так как периметр это сумма всех сторон , а это равнобедренный треугольник , то боговая сторона равна : (20.6-6)/2=7.3дм
2)основание равно 20.6-5.3*2=10дм
3)Эта решается уравнением . Обозначим две равные стороны за икс , а основание за x+2.6 , получим уравнение x+x+2.6+x=20.6
3x=20.6-2.6
x=18/3
x=6
Значит две равные стороны равны 6дм , тогда основание равно 20.6-6*2=8.6дм
По теореме косинусов большая диагональ основания
d1^2=a^2+b^2-2ab*cos 120=3^2+5^2-2*3*5(-1/2)=9+25+15=49
d1=7
Малая диагональ основания
d2^2=a^2+b^2-2ab*cos 60=3^2+5^2-2*3*5*1/2=9+25-15=19
d2=√19
Большая диагональ параллелепипеда D1=√65.
Высота, она же боковое ребро, по теореме Пифагора
H=√(D1^2-d1^2)=√(65-49)=√16=4
Малая диагональ параллелепипеда
D2=√(d2^2+H^2)=√(19+16)=√35