Объяснение:
Треугольник , у которого один угол прямой, а два других острые.
Гипотенуза.
Если острый угол прямоугольного треугольника равен 30°, то катет,лежащий напротив него равен половине гипотенузы.
№4
угол BAС=180-(90+42)=48 градусов.
№5
АВ=ВС*2=12*2=24см
№6
Бокова сторона АС является гипотенузой треугольника АСД. Катет СД равен половине гипотенузы. СД=АС:2=7:2=3,5 см.Поэтому угол САД= 30°. Угол АСВ= 180°-(90°+30°)=60°,Угол АСВ=СВА=60°,значит и угол САВ=60°
ответ: в равнобедренном треугольнике АВС все углы равны 60°
№7
Высота ,проведенная на гипотенузу равнобедренного прямоугольного треугольника является медианой и делит его ещё на два равнобедренных прямоугольных треугольника .В получившихся треугольниках эта высота становится катетом. 18:2= 9см,значит и высота ,проведенная на гипотенузу равнобедренного прямоугольного треугольника равна 9 см.
угDAC=угMAB; угDAM=угАМВ(т.к. это накрест лежащие углы при параллельных AD и BC) Значит уг.ВАМ=угВМА и треугольник
АВМ - равнобедренный, то есть АВ=ВМ
угADM=угDMC(т.к. это накрест лежащие углы при параллельных AD и BC ); угADM=угMDC значит угMDC=DMC
угDMC и BMN вертикальные то есть равны. То есть MDC=BMN, но MDC=BNM(т.к. это накрест лежащие углы при параллельных AN и DC) значит BMN=BNC и треугольник BMN - равнобедренный и BN=BM.
Мы имеем BM=BM;BM=BA то есть DC=BA=BN=AN/2=10/2=5cм
треугольник DCM равнобедренный (т.к. MDC=DMC) то есть DC=MC=5см
AD=BC=CM+MB=5+5=10см
P=10+10+5+5=30См Чертеж как нибудь сама
1) Построить окружность любого радиуса R. Этот радиус ещё пригодится, поэтому пусть он останется на циркуле - менять его нельзя.
Через центр окружности в любом направлении провести диаметр AB.
2) Из точки А вниз и из точки В вверх поставить циркулем засечки на окружности - точки M и N. AM=BN=R
3) Через точки A,M,N провести прямые AM и AN
4) Из точки А на прямой AN поставить циркулем засечку - точку К. Из точки К сделать циркулем ещё одну засечку на окружности - точку С. AK=KC=R
5) Через точки А и С провести прямую AC.
Угол между прямыми AC и AM равен 75°
Пояснение к построению
2) Когда из точки А на окружности делается засечка, то получается равносторонний треугольник ΔAOM со сторонами, равными R. Углы равностороннего треугольника равны по 60° ⇒
∠MAO = 60°. Аналогично ∠OBN = 60°
ΔANB вписан в окружность по диаметру ⇒ ΔANB - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90° ⇒
∠NAB = 90°-∠ABN = 90°-60° = 30°
4) Когда из точки А делается засечка К, а затем из точки К засечка С, то получается ромб AKCO со сторонами, равными радиусу R. Диагонали ромба делят углы ромба пополам ⇒
∠CAO = ∠CAK = ∠NAB/2 = 30°/2 = 15°
5) ∠CAM = ∠CAO + ∠MAO = 15° + 60° = 75°