1 способ. можно воспользоваться правилом, что синус угла от 0° до 90° возрастает, синус угла от 90° до 180° убывает.
а) sin 150°; sin 135°; sin 90° ; sin 60°
в) использовать формулу , чтобы свести все углы в первую четверть.
sin (180° - α) = sin α
sin 60° = sin (180° - 60°) = sin 120°
sin 90° = sin (180° - 90°) = sin 90°
sin 135° = sin (180° - 135°) = sin 45°
sin 150° = sin (180° - 150°) = sin 30°
ответ: sin 150°; sin 135°; sin 90° ; sin 60°
по таблице косинусов углов
cos(0°)=cos(0)= 1
cos(60°)=cos(π/3)=1/2
cos(90°)=cos(π/2)= 0
cos(135°)=cos3 x π/4=,7071)
cos(150°)=cos5 x π/6=(-0,8660)
ответ cos(150°). cos(135°). cos(90°). cos(60°)
1.У окружности бесчисленное множество осей симметрии, , у параллелограмма осей симметрии нет, если это не ромб, прямоугольник или квадрат, у равнобедренной трапеции одна, прямая, проходящая через середины оснований, перпендикулярно им, у квадрата четыре, две средних линии и две прямые, на которых лежат диагонали, у ромба, не являющегося квадратом, две оси, лежащие на диагоналях, которые, как известно, перпендикулярны.
2. При этих видах симметрии расстояние между точками сохраняется, а значит, преобразование симметрии относительно прямой и относительно точки есть движение.
3. а) квадрат, равнобедренная трапеция, прямоугольник, ромб
б) параллелограмм, и все его виды, т.е. ромб, прямоугольник, квадрат.