Даны три точки. Известно, что AB = 3,7 см, AC = 5,6 см, BC= 1,9 см. Докажи методом от противного, что данные три точки лежат на одной прямой.
Объяснение: Предположим ,что точки A ,B и C не лежат на одной прямой ,т.е. ABC — ломаная , AB и BC — стороны или звенья ломаной. концы отрезков (точки A, B, C) — вершины ломаной.
тогда AB + BC должно получится больше AC ,но AB + BC=3,7 см+ 1,9 см = 5,6 см = AC . Получили противоречие ,значит предположение ( что данные три точки лежат на одной прямой) неверно . Они расположены на одной прямой.
От точек касания вписанной окружности сторон треугольника к вершине пирамиды построим апофемы. Поскольку для каждой из боковых граней угол между апофемой и плоскостью основания один и тот же, поскольку у всех трёх апофем общая вершина и, следовательно, одинаковая проекция апофемы на плоскость основания - то расстояние от сторон треугольника до проекции вершины пирамиды на плоскость основания одно и то же и
И тогда вершина пирамиды лежит над центром вписанной в основание окружности.
И тогда треугольник в основании - равнобедренный.
и тогда его стороны равны a√2, a√2, a