построем рисунок, в треугольнике ВСD: ВС=СD (т.к. шестиугольник правильный), угол равен 120 градусов, (по формуле для нахлждения угла в правильном многоугольнике а=180(n-2)/n), проведһм перпендикуляр СН, угол ВHC = (180-120)/2=30 (т.к. треугольник равнобедренный, углы при основании равны) следовательно, СН=0,5ВС = корень из 48 по полам=корень из двенадцати (после преобразования)
теперь ВН = (по теореме пифагора) корень из (48-12) = корень из 36 = 6
ВН равно HD (т.к. в равнобедренном треугольнике высота равна медиане) следовательно ВD=2BH = 6*2 = 12
Как то так!
Так как трапеция прямоугольная, то сразу из задания находим ответ на вопрос: радиус вписанной окружности равен расстоянию от точки К до вертикальной боковой стороны АВ и равен 5.
Тогда АВ = 2*5 = 10. Это также и высота Н трапеции.
На основе свойства любой трапеции: треугольники, лежащие на боковых сторонах, равновеликие, находим наклонную боковую сторону.
S(АВК) = S(СКД).
Отсюда СД = 10*5/4 = 12,5.
На основе свойства описанной трапеции: сумма длин оснований трапеции равна сумме длин её боковых сторон, находим среднюю линию L трапеции.
L = (10 + 12,5)/2 = 22,5/2 = 11,25.
Получаем ответ:
S = HL = 10*11.25 = 112.5 кв.ед.