М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gsubxdu
gsubxdu
09.02.2021 19:11 •  Геометрия

Вравнобедренном треугольнике авс (ав=вс) тангенс угла вас равен 0,75, к - точка касания вписанной окружности со стороной вс. найдите площадь треугольника авс, если ак=b.

👇
Ответ:
dsdg1g
dsdg1g
09.02.2021

Хорошая задачка, хотя и очень простая.

Обозначим M - середина AC, BM - вертикальная ось симметрии АВС, N - точка касания АС вписаной окружностью, симметричная К относительно ВМ.

Тр-к АМС прямоугольный, BM/АМ =3/4 (по условию). Обозначим за х некую единицу измерения сторон, так что ВМ = 3*х, АМ = 4*х. Тогда АС = ВС = 5*х (надо ссылаться на Пифагора?), АN = АМ = 4*х, АС = 8*х.

Само собой, косинус ВАС (и ВСА) равен 4/5.

Имеем по теореме косинусов

b^2 = (8*x)^2 + (4*x)^2 - 2*(8*x)*(4*x)*(4/5);

Отсюда х^2 = b^2*5/144;

Площадь S = (4*x)*(3*x) = 12*x^2 = b^2*5/12 

 

4,8(44 оценок)
Открыть все ответы
Ответ:
опернг
опернг
09.02.2021
1)Окружность вписана в треугольник, если она касается всех его сторон. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности. Центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. От этой точки нужно провести перпендикуляр к любой стороне и это расстояние будет радиусом вписанной в треугольник окружности. 2)  Окружность называется описанной вокруг треугольника, когда все его вершины  лежат на окружности. Центром описанной окружности является точка пересечения срединных перпендикуляров к сторонам треугольника. Радиусом такой окружности будет расстояние от этого центра до вершин треугольника. 3)  Вневписанная окружность — окружность, касающаяся одной стороны треугольника и продолжения двух других его сторон.Центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах. 
Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.Вневписанных окружностей у треугольника может быть 3 - к каждой стороне. 
4,7(62 оценок)
Ответ:
AMANBEKBERDIMURAT
AMANBEKBERDIMURAT
09.02.2021
А) BADC - пирамида
1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC
Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||)
ч.т.д
б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC
А отношение площадей подобных ▲ равно квадрату коэффициенту подобия.
S1:S2=k^2
S2=S1:k^2
S2=48:2^2=12см^2
ответ:12 см^2
4,5(57 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ