Объяснение:
А1 1)8
d=2r=2*4=8
A2 3)3π
C=2πr=2π*1,5=3π
A3 3)75°
<вписанного=1/2 <центральный 150°:2=75°
A4 1)28 см
AB+CD=AD+BC
P=2(AB+CD)=2*14=28 см
A52)180°
В1
В окружность вписан квадрат со стороной;
Сторона квадрата а = 8 см;
Найдем длину дуги окружности, стягиваемой стороной квадрата.
1) Длина дуги находиться по формуле:
L = π * R * a/180°;
R = d/2;
d = диагональ квадрата.
2) Найдем диагональ квадрата по теореме Пифагора, если катеты равны стороне квадрата, то есть 8 см.
d = √(8^2 + 8^2) = √(64 + 64) = √(2 * 64) = 8√2 см;
С=πd= 8√2 π см
B2 1),2)3
B3
.Радиус ОА окружности является серединным перпендикуляром хорды СД,также с касательной ,проведенная через точку А,в точке касания образует прямой угол.Поэтому касательная ,проведенная через точку А, параллельна хорде СД.
~ (приблизительно равно) 12 324,5
Объяснение:
Я использовал таблицу Брадиса что бы найти значения косинуса и тангенса 45 градусов (дробь корень из 2/2 это 0,7071 то есть корень из двух пополам)
Так как нам известен прямой угол 90 градусов и два угла при основании 45 градусов, то мы можем найти неизвестный катет: гипотенуза умноженная на синус прилежащего угла. Второй неизвестный катет можно найти так: известный катет умножить на тангенс противолежащего угла.
Затем площадь можно найти по формуле Герона, согласно которой площадь треугольника равна корню из произведения разностей полупериметра треугольника и каждой из его сторон на полупериметр.
Зачастую задачи на решения треугольников имеют приблизительный ответ.
Найдем радиус по формуле
L=2R * sin α\2
2R=L:sin α\2=12√3 : √3\2 = 24
R=12