ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
В этой задаче нужно использовать теорему об отношении площадей подобных треугольников: Если нужно, докажите, что эти два треугольника - подобные (их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого) .
S/s1 = k^2, где k - коэффициент подобия.
По условию, площадь одного треугольника в два раза больше площади второго:
S = 2s1
S/s1 = 2, S/s1 = k^2
k = √2
Отношение оснований треугольнико равно коэффициенту подобия:
ОСН/осн = k
Найдём ОСН = осн*k = 18*√2
ответ: Основание треугольника равно 18*√2 или ≈ 25,46 см.