Окружность с центром о и радиусом 12 см описана около треугольника mnk так, что угол mon равен 120°, угол nok равен 90°. найдите сторону mn. не по теореме косинусов. как - нибудь понятненько.. одну сторону из я уже нашла красиво по теореме пифагора.
Решать будем, используя неравенство треугольника: Длина любой стороны треугольника не превосходит суммы длин двух других его сторон, т. е. если a, b, c - стороны треугольника, то, например с<=а+b.
По условию задачи а=10 см, b=4 см. Пусть с - неизвестная сторона. Т.к. треугольник равнобедренный, то у него две стороны равны, а значит возможны два случая: 1 случай: а=10 см, b=4 см, с=4 см 2 случай: а=10 см, b=4 см, с=10 см. Проверим выполнимость неравенства треугольника в обоих случаях: 1 случай: 10<=4+4, 10<=8 - неверное неравенство. Неравенство треугольника не выполняется, значит с≠4. 2 случай: 10<=4+10, 10<=14 - верное неравенство 4<=10+10, 4<=20 - верное неравенство Неравенство треугольника выполняется, а значит с=10 см. ответ: 10 см.
Я формулировку теоремы не стала удалять (повторить всегда полезно)) но она и не пригодилась... 1/ отрезки касательных, проведенных из одной точки (К) равны... DK=KC 2/ центр вписанной в угол окружности лежит на биссектрисе этого угла)) ОК - биссектриса ∠DKC ∠DKO = ∠CKO ∠DOK = ∠COK 3/ вписанный угол равен половине градусной меры центрального, опирающегося на ту же дугу ∠DAC (опирается на дугу DC) = (1/2)∠DOC = ∠KOC т.е. DA || KO О --середина АС ---> KO --средняя линия, К --середина ВС DK = KC = (1/2)BC = 6