Значение под корнем можно представить в виде произведения чисел, из которых легко извлекается целый корень, например, √288 можно записать как √4*72, из 4 извлекается корень и выносится, получается 2√72, теперь 72 расписывается как 2√4*18, выносим ещё одну двойку, получается 2*2√18, = 4√18, расписываем под корнем дальше, 4√9*2 из девятки корень это 3, выносится за корень, получается 4*3√2, в ответе получается 12√2
Составь уравнение(х-угол при основании,второй х-другой,равный ему угол при основаниих+24-это угол,лежащие против основания).Имеем уравнение:х+х+х+24=180;3х+24=180;х=52.Значит,угол ,лежащий против основания,равен 52+24=76 градусов. Теперь второй вариант. Здесь на 24 градуса больше угол при основании.Так же составляем уравнение(х-угол против основания,х+24-угол при основании и так же другой,равный ему угол при основании.)Имеем уравнение:х+х+24+х+24=180;3х+48=180;х=44,значит,угол против основания равен 44 градуса,а прилежащие к основанию равны по 68 градусов
Сторона основания m, диагональ основания m√2 Половина диагонали m√2/2, высота и боковое ребро образуют прям-ный тр-ник с катетом m√2/2 и углом против него α/2. tg (α/2) = (m√2/2) / H а) Высота равна H = (m√2/2) / tg (α/2) = m√2*ctg (α/2) / 2 б) Боковое ребро b = (m√2/2) / sin (α/2) в) Апофема (высота боковой грани) L^2 = b^2 - m^2 = (m^2/2) / sin^2 (α/2) - m^2 L = m*√ [1 - 2sin^2 (α/2)] / sin (α/2) = m*√(cos α) / sin (α/2) Угол между боковой гранью и плоскостью основания sin β = H / L = m√2*ctg(α/2) / 2 * sin(α/2) / (m*√(cos α)) = √2*cos(α/2) / (2√(cos α)) г) Двугранный угол при боковом ребре - это не знаю.