1) Найдем угол В: Т. к. AD - высота, то угол ADB равен 90 градусам. Также известен угол BAD, он равен 34 градусам. Сумма всех углов треугольника равна 180 градусам. 180-(34+90)=180-124=56 градусов.
2) Т. к. треугольник ABC равнобедренный (это известно из условия), то углы у его основания равны, следовательно угол A равен углу В, значит угол А=56 градусов.
3)Найдем угол C: Т. к. сумма углов равна 180 градусам, а углы А и В известны, мы можем найти требуемое 180-(56+56)=180-112=68 градусов
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
Сначала найдем саму функцию вида у=ax^2+bx+с, заменив переменные a, b и c числами. для этого подставляем известные значения х и у: а*0+b*0+с=4, отсюда находим с=4 a*1+b*1+4=-1, отсюда находим а=-5-b (-5-b)*4+b*2+4=-4, отсюда находим b=-6 и подставляя это значение во второе уравнение находим, что a=1 теперь ищем ее вершину: по формуле вершин для парабол: х=-b/2a; y=(b^2-4ac)/4a, отсюда находим х=)/2*1)=3; у=)^2-4*1*4)/(4*1))=-5 альтернативно можно было бы решить через производную, результат бы не изменился. ответ: координатой вершины является точка(3|-5).
Т. к. AD - высота, то угол ADB равен 90 градусам. Также известен угол BAD, он равен 34 градусам. Сумма всех углов треугольника равна 180 градусам.
180-(34+90)=180-124=56 градусов.
2) Т. к. треугольник ABC равнобедренный (это известно из условия), то углы у его основания равны, следовательно угол A равен углу В, значит угол А=56 градусов.
3)Найдем угол C:
Т. к. сумма углов равна 180 градусам, а углы А и В известны, мы можем найти требуемое
180-(56+56)=180-112=68 градусов
ответ: 68 градусов