Так как боковые ребра пирамиды равны, ее высота проецируется в центр окружности, описанной около основания. Докажем это: Пусть МО - высота пирамиды. МА = МВ = МС по условию, МО - общий катет для треугольников МОА, МОВ и МОС, тогда эти треугольники равны по гипотенузе и катету, значит и ОА = ОВ = ОС. Т.е. О - центр описанной окружности.
Площадь основания по формуле Герона: р = (39 + 17 + 28)/2 = 84/2 = 42 см S = √(p(p - AB)(p - BC)(p - AC)) = √(42 · 3 · 2 · 25 · 14) = = √(6 · 7 · 3 · 2 · 25 · 2 · 7) = 6 · 7 · 5 = 210 см²
Радиус окружности, описанной около произвольного треугольника: R = AB·BC·AC / (4·S) = 39 · 17 · 28 / (4 · 210) = 22,1 см ОА = R = 22,1 см Из прямоугольного треугольника МОА по теореме Пифагора: МО = √(МА² - ОА²) = √(22,9² - 22,1²) = √((22,9 - 22,1)(22,9 + 22,1)) = = √(0,8 · 45) = √36 = 6 см V = 1/3 ·S · MO = 1/3 · 210 · 6 = 420 см³
1. 1) 50: 2 = 25 (- полусумма сторон) 2) пусть х + 5 - большая сторона, тогда х - наименьшая. полусумма равна 25, имеем уравнение: х+х+5=25, отсюда х = 10. 3) итак, наименьшие стороны равны по 10 см, а наибольшие по 15 см.2.30 градусов, в ромбе все стороны равны, и если сторона равна диагонали, то образуется равносторонний треугольник у которого все внутренние углы равны 60 градусов, вторая диагональ есть биссектриса внутреннего угла - делит его пополам3. 0,5*ac=корень (ad в квадрате + (0,5*bd) в квадрате) ac = 2*корень (6 в квадрате + 2,5 в квадрате) = 2*6,5 = 13
Угли р/б треугольника при основании равны, следовательно, АВС = АСВ = (180 - ВАС) / 2 = (180 - 50) / 2 = 130 / 2 = 75