Найдите сторону равнобокой трапеции, основания которой равны 10 и 8, а диагонали перпендикулярны боковым сторонам. ––––––––––––––––––––––––––––––––––––––––––––––– Вариант решения. Опустим высоту из тупого угла. Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований. Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда х²=10*1=10 х=√10 см
1. всі чотири сторони квадрата мають однакову довжину, тобто вони рівні: ab = bc = cd = ad 2. протилежні сторони квадрата паралельні: ab||cd, bc||ad 3. всі чотири кути квадрата прямі: ∠abc = ∠bcd = ∠cda = ∠dab = 90° 4. сума кутів квадрата дорівнює 360 градусів: ∠abc + ∠bcd + ∠cda + ∠dab = 360° 5. діагоналі квадрата мають однакової довжини: ac = bd 6. кожна діагональ квадрата ділить квадрат на дві однакові симетричні фігури 7. діагоналі квадрата перетинаються під прямим кутом, і розділяють одна одну навпіл: ac┴bd ao = bo = co = do = d 2 8. точка перетину діагоналей називається центром квадрату і також є центром вписаного та описаного кола 9. кожна діагональ ділить кут квадрату навпіл, тобто вони є бісектрисами кутів квадрату: δabc = δadc = δbad = δbcd ∠acb = ∠acd = ∠bdc = ∠bda = ∠cab = ∠cad = ∠dbc = ∠dba = 45° 10. обидві діагоналі розділяють квадрат на чотири рівні трикутника, до того ж ці трикутники одночасно і рівнобедрені, і прямокутні: δaob = δboc = δcod = δdoa
Площадь прямоугольного треугольника = 1/2*a*b = 3
a*b = 6
a = 3 и b = 2
или
a = 6 и b = 1
Тогда:
1) если a = 3 и b = 2 , то по теореме Пифагора сторона ромба =
1) если a = 6 и b = 1 , то по теореме Пифагора сторона ромба =