М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kseniasmirnova3
kseniasmirnova3
12.05.2023 18:16 •  Геометрия

Диагональ основания правильной четырехугольной пирамиды равна 1,5дм, а высота равна 2,8дм. найти объем пирамиды.

👇
Ответ:
ramilienozxqke
ramilienozxqke
12.05.2023
D = 1,5 дм
h = 2,8 дм
V?
Основание - квадрат. Его площадь - половина произведения диагоналей
S = 1/2*d² = 1,5²/2 = 2,25/2 = 1,125 дм²
V = 1/3*S*h = 1/3*1,125*2,8 = 0,375*2,8 = 1,05 дм³
4,8(54 оценок)
Открыть все ответы
Ответ:

ответ:tgα∗ctgα=1

а) tg \alpha =2tgα=2 ctg \alpha =1:2= 0,5ctgα=1:2=0,5

\frac{tg a+ctg a}{tg a-ctg a}= \frac{2+0,5}{2-0,5}= \frac{2,5}{1,5}= \frac{5}{3}=1 \frac{2}{3}

tga−ctga

tga+ctga

=

2−0,5

2+0,5

=

1,5

2,5

=

3

5

=1

3

2

б) \frac{sin \alpha }{cos \alpha }=2

cosα

sinα

=2 sin \alpha =2*cos \alphasinα=2∗cosα

\frac{sin a -cos a}{sin a+cos a} = \frac{2*cos a-cos a}{2*cos a+cos a}= \frac{cosa}{3cosa} = \frac{1}{3}

sina+cosa

sina−cosa

=

2∗cosa+cosa

2∗cosa−cosa

=

3cosa

cosa

=

3

1

в) \frac{2sin a+3cos a}{3sin a-7cos a} = \frac{4cos a+3cos a}{6cos a-7cos a} = \frac{7cos a}{-cos a}= \frac{7}{-1}=-7

3sina−7cosa

2sina+3cosa

=

6cosa−7cosa

4cosa+3cosa

=

−cosa

7cosa

=

−1

7

=−7

г) \frac{sin^2a+2cos^2 a}{sin^2a-2cos^2 a}= \frac{(2*cos a)^2+2cos^2 a}{(2*cos a)^2-2cos^2 a}= \frac{4cos^2 a+2cos^2 a}{4cos^2 a-2cos^2 a}= \frac{6cos^2 a}{2cos^2 a} = \frac{6}{2}=3

sin

2

a−2cos

2

a

sin

2

a+2cos

2

a

=

(2∗cosa)

2

−2cos

2

a

(2∗cosa)

2

+2cos

2

a

=

4cos

2

a−2cos

2

a

4cos

2

a+2cos

2

a

=

2cos

2

a

6cos

2

a

=

2

6

=3

4,6(89 оценок)
Ответ:
dana1835
dana1835
12.05.2023
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует  сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
4,6(2 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ